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Abstract Face detection is a mature problem in computer vision. While
diverse high performing face detectors have been proposed in the past, we
present two surprising new top performance results. First, we show that
a properly trained vanilla DPM reaches top performance, improving over
commercial and research systems. Second, we show that a detector based
on rigid templates - similar in structure to the Viola&Jones detector - can
reach similar top performance on this task. Importantly, we discuss issues
with existing evaluation benchmark and propose an improved procedure.

Figure 1: Our proposedHeadHunter detector at the Oscars. Can you spot the
one false positive, and one false negatives ? (hint: �rst rows).

1 Introduction

Face detection is a classic topic in computer vision. It is a relevant problem
due to its many commercial application in a human-centric world, and as a
building block for more sophisticated systems. Deployed in a myriad of consumer
products (e.g. digital cameras, social networks, and smart phone applications),
it is considered a mature technology. In this paper we focus on the canonical
problem of face detection in a single frame of photographs taken �in the wild�.

Because of its maturity, we consider it as an application particularly suit-
able to study core aspects of object detection. One can expect benchmarking
datasets with a diverse set of methods available for comparison. However, de-
spite the interest in the topic and the quantity of data available, due to the lack
of a commonly accepted annotation guidelines and evaluation protocols, a fair
comparison of face detectors on various datasets is still missing.
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In this paper we intend to create a common ground to evaluate and compare
di�erent face detectors. We have selected the most relevant datasets for face de-
tection, improved their annotations, and propose a modi�ed evaluation protocol
that reduces dataset bias.

With this new evaluation in hand, we set to understand �what makes a face
detector (truly) tick?�. We propose to compare the well known deformable parts
model (DPM) [9] with the integral channels detector approach [7]. We also compare
side by side face detectors originating from the research community and from
commercial products. We show that despite signi�cant progress, face detection
has not yet reached saturation. Even more surprisingly, we present new top
results while using a simpler architecture than competitors. Although we focus
on face detection, most of the discussion is agnostic to the object class.

1.1 Contributions

� We point out that the evaluation of existing face datasets is biased due to
di�erent guidelines for the annotation. We provide improved annotations and
a new evaluation criteria that copes better with these problems (section 2).

� We show that (despite common belief) face detection has not saturated, and
there are still relevant open questions to explore (section 6).

� We show that (contrary to previously reported results), when properly used,
a vanilla deformable part models (DPM) [9] reaches top performance on face
detection, improving over more sophisticated DPM variants (section 4).

� We evaluate for the �rst time an integral channels detector [7,3] for the task
of face detection (section 3). We show that top detection results on face
detection can be obtained using a small set ofrigid templates (i.e. without
deformable parts).

� We explore which aspects of such rigid detector most impact quality, such
as the number of components or the training data volume (section 5).

� We provide source code for both our improved evaluation toolbox and for
training/evaluating our proposed face detector.

1.2 Related work

Being a classic topic, there are probably thousands of papers speci�cally address-
ing the face detection problem. We present here a selection of what we consider
landmark papers on the topic.

Nowadays the textbook version of a face detector is the Viola&Jones ar-
chitecture [30]. It introduced the idea of computing an integral image over the
greyscale input to enable fast evaluation of boosted weak classi�ers based on
Haar-like features. This detector provides high speed, but only moderate de-
tection quality. This framework has been the source of inspiration for countless
variants [35]. Amongst them SURF cascades [16] is one of the top performers
(recently introduced by Intel labs).

Thanks to its elegant formulation, its intuitive interpretation, and strong re-
sults the Deformable Parts Model (DPM) has established itself as the de-facto
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(a) Pascal Faces [33] (b) AFW [36] (c) FDDB [12]
Figure 2: Example frames of the annotated datasets considered.

standard for generic object detection [9]. This approach combines the estima-
tion of latent variables for alignment and clustering at training time, the use of
multiple components and deformable parts to handle intra-class variance, and
a healthy dose of engineering to make it all work robustly and fast enough. A
tree-structured DPMtrained with supervised parts positions was successfully ap-
plied to face detection and �ducial points estimation [36,33], showing improved
results over vanilla DPM.

Some of the earlier work on face detection employed neural networks [22,10,20].
Although competitive at the time, it is unclear how well such a method would
perform on modern benchmarks. The work of [20] introduced the intriguing idea
of coupling pose estimation and face detection into a single inference problem.

Other than the discriminative approaches mentioned above competitive re-
sults have been attained by formulating the detection problem as an image re-
trieval problem [27,17].

Instead of proposing a new detector, [13] shows that adapting a detector to
the context of the test image can signi�cantly improve detection quality. Al-
though very interesting, it is a form of �per image semi-supervised learning�. In
this paper we focus on the raw detection problem, when using only the informa-
tion available in each candidate detection window.

In our experimental section we also compare to black box commercial sys-
tems such as Picasa (from Google), Face.com (acquired by Facebook), Olaworks
(acquired by Intel), and Face++ (start-up based in China).

2 Datasets

For our experiments we use four datasets of faces acquired in an unconstrained
setup (so called �in the wild�). AFLW [15] contains � 26 000annotated faces,
that we use for training. For preliminary experiments (sections 5.1 to 5.4), and
parameters tuning we use the Pascal Faces dataset [33] (851Pascal VOC images
with bounding boxes). For comparison with previous work we use AFW [36]
(205 images with bounding boxes) and FDDB [12] (2 845 images with ellipses
annotations). See �gure 2 for some example frames, which illustrate the �in the
wild� aspect of our test data.
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Unless otherwise speci�ed detections are evaluated using the standard �in-
tersection over union above50 %� criterion [8], and quality is summarised using
the average precision (AP).

2.1 Annotations and evaluation policies

The four datasets used in this paper are annotated by di�erent research groups
following di�erent annotation strategies. As it stands, a face detector algorithm
trained to output a speci�c bounding box policy cannot be properly evaluated
directly on the di�erent datasets.

In our preliminary experiments we found that adjusting the detector output
towards the speci�c dataset annotations is key for competitive results. For most
published methods it is unknown if adjustments to compensate di�erent anno-
tations have been made or not, making it di�cult to perform a fair comparison.
We want to improve this situation.

Di�erences in annotations Examples of dataset di�erences include: di�erent
policies for what constitutes a face (is a statue head a face? is a head rotated
more than 90 degrees a face?), di�erent sizes of annotation boxes (relative to
the real world face, i.e. should the box span all facial landmarks, or include the
whole head?), boxes centred di�erently (for lateral views, centred on the nose or
on the cheeks?), and di�erent minimum/maximum annotated face size.

All of these di�erences have a direct impact on the false positive and false
negative evaluation metrics. If one method tunes for a speci�c dataset, then it
will be unfairly penalized in another one. In this paper we take special care
to design the comparisons as fairly as possible; we propose remedial measure
for each of these issues. These measures require changes in the annotation and
evaluation protocol for Pascal Faces and AFW (the FDDB dataset is immutable,
see below).

New annotations The goal of new annotations is two fold: 1) Make sure that
the bounding boxes are created using a uniform policy inside the dataset (this
is imperative for proper evaluation). 2) To annotate all faces that might depend
on the face presence policy.
For the new annotations, we adjusted the detection bounding boxes in Pascal
Faces to match the guidelines de�ned in the supplementary material (similar to
AFW one). The boxes in AFW already follow much stricter rules, and needed
no major edits. Additionally, we added new annotations for overlooked faces and
faces in challenging conditions such as small, occluded, or truncated faces. We
labelled most of these new detections with an ignore �ag. Methods should not
be punished for their ability to detect challenging instances.

Remedial measures for bounding box policy Our new evaluation has a
preprocessing stage that searches for a global rigid transformation of the de-
tection output of a speci�c method, such as to maximize the overlap with the
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Figure 3: Precision-recall curves of the di�erent evaluation methods on Pascal.
(a) Shows the evaluation based on the previous annotations, not compensating
di�erent guidelines. (b) Transforms the detections to re�ect the test set anno-
tation policy. (c) Green and yellow boxes show di�erent annotation/detection
policies. The green box indicates a previously missing annotations, now marked
as �ignore�. Detecting this face should not count as false positive.

ground truth annotations. By searching a global scaling and translation that
maximize performances we evaluate as if each method would have taken care of
targeting their detections (size and position) towards the speci�c test set.
Note that since bounding boxes are adapted for every method in our evaluation,
it becomes part of the evaluation protocol and does not advantage any speci�c
method. The details of the estimation algorithm are provided in the supplemen-
tary material.

Remedial measures for di�erent scale ranges Another important aspect of
the di�erent detectors is their minimal and maximal search scale. Di�erent search
ranges result in di�erent sets of detected bounding boxes. The search range and
annotation quality/guidelines have severe impact on the overall detector quality.
If one approach searches for smaller faces than speci�ed by the dataset policy,
high scoring false positives might be introduced; if a method is searching only
for larger faces, it will miss out on recall. Thus using annotations and detections
as-is is a no go.

For the sake of explanation let us assume a dataset has been perfectly anno-
tated for all faces larger than 15 pixels. Di�erent detectors will output di�erent
detection sizes, which might or might not cover the minimum size annotations. In
this example, let us assume that we are interested in evaluating all faces larger
than � = 30 pixels. The naive approach would be to chop-o� all annotations
smaller than � , and also all detections smaller than� . However, if the detector
originally triggered with a bounding box of size � � 1 for a face of true size� ,
removing it will create a drop in recall (false negative). If one decides to keep
detection smaller than � while dropping annotations smaller than � , then this
create arti�cial false positives. The naive approach does not work either.

We propose to solve this problem in the following way. Given a set of an-
notations, the evaluation minimal size � is set to a value comfortably larger
than the minimal annotation size. We introduce a second threshold� , which
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de�nes the minimal size of detections that we consider. We set� =
p

0:5 � � 2,
given that our overlap over union threshold is0:5. With � we keep all detections
which would still have su�cient overlap ( > 0:5 overlap over union) with a ground
truth bounding box of size � , and remove all smaller ones. Finally, to avoid small
false positives, we mark all annotations smaller than� with the �ignore� �ag.
With these two thresholds we reduce the border e�ects, and obtain the desired
unbiased evaluation. In our evaluation we set set� to 30 pixels.

Impact of the new protocol To summarize our new protocol for Pascal and
AFW datasets include: a) new annotations, b) a transformation of the detection
bounding boxes to adapt each algorithm to each dataset, c) a new handling of
detection windows on the border of the annotated scale range.
To give an impression about the importance of a proper evaluation, in �gure 3
we compare the precision-recall curves of several methods on the Pascal Faces
dataset. Sub-�gures 3a and 3b show, respectively, results with the original an-
notations and the standard protocol (Pascal VOC [8]), and with our new an-
notations and protocol. Many detections, which are counted as errors in �gure
3a are actually wrongly annotated. This produces an arti�cial slope on all the
curves that biases the results. Importantly, notice how the change of evaluation
protocol (from �gure 3a to �gure 3b) also produces a di�erent ranking for the
methods.

FDDB dataset This dataset has a good annotation quality, provides a pub-
licly available evaluation toolbox, and collects results online. All of these are best
practices. Unfortunately, the FDDB protocol calls for sharing the ROC curves,
not the detection bounding boxes. Without these boxes it is impossible to im-
prove the evaluation, or to have a in-depth analysis of the di�erent detection
methods. We do not (cannot) use our new evaluation protocol for the FDDB
dataset.
For our own methods we convert our detection bounding boxes into ellipses based
on the dataset annotation description [12]. The FDDB evaluation protocol fore-
sees to match bounding boxes with their annotation ellipses using the Pascal
VOC criterion. Changing the output format from bounding boxes to ellipses
immediately increases the overlap region, showing a signi�cant positive impact
on the result curve. Here again, it is unclear which other methods make similar
adjustments.

Our evaluation tools, and the new annotations for Pascal Faces and AFW,
will be released together with this paper. We hope that future detection bench-
marks will consider in their design the issues raised here.

3 Integral channel features detector

One of the key ingredients in the classic Viola&Jones face detector [30] is the
use of an integral image (summed area table) for fast features computation. This
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idea is generalised by the integral channels features framework described in [7].
Instead of computing an integral image over a single input greyscale channel, it
is proposed to de�ne an arbitrary set of feature channels (feature maps), such
as quantised oriented image gradient, colour, linear �lter responses, etc. The
integral images de�ned over these channels allow to quickly sum over arbitrary
rectangular pooling regions. The object detector is trained by boosting a forest
of trees built using such rectangular pooling regions as input features.

Somewhat surprisingly, this combination of classic ingredients (oriented gra-
dient and colour feature maps, decision trees, and Adaboost) has shown top per-
formance on tasks such as pedestrian detection [3], tra�c signs detection [19],
and feature points matching [29]. It reaches higher pedestrian detection qual-
ity than more sophisticated methods using deformable parts [9], more complex
features [31], non-linear kernels [18] or a deep architecture [26].

We propose to adapt the integral channels detector to the task of face de-
tection. We purposely use a plain setup, similar to [7,3,19]. Unless otherwise
speci�ed we use simple gradient magnitude channels (six for quantised orienta-
tions, one for magnitude channel), and colour channels (LUV colour space). We
use shallow boosted trees of depth two (three stumps per tree).

The main di�erence from previous instances of this framework is that instead
of using a single template per object category, we combine a set of templates
to represent the face category (so called �components�) [9,25]. Each component
captures a fraction of the intra-class diversity of faces. At test time all templates
are evaluated, and their detections merged during non-maximum suppression.

3.1 Baseline detector

Our baseline detector SquaresChnFtrs-5 consists of 5 components, clustered
using the yaw angle annotations. We collected a total of15 106samples from the
AFLW database [15] to train 5 models (components) of size80� 80 pixels.

A frontal face detector (yaw angle± 20 degrees) and two side views (20 ! 60
and 60 ! 100 degrees) are trained using6 752, 5 810, and 2 544samples respec-
tively. Pitch and roll are kept between ± 22:5 degrees. As negative samples we
use3 652person-free images from the Pascal VOC database [8]. The remaining
two models are mirrored version of the side views. See supplementary material
for details on the learned models and their training samples.

For each component the training is similar to the SquaresChnFtrs setup
described in [3], unless otherwise speci�ed we use the same parameters. The
features are drawn from a pool containing all possible square features (28 700).
We perform 4 rounds of bootstrapping to ensure that no additional false positives
can be found in our negative training data. Our �nal component detector consists
of an Adaboost classi�er with 2 000weak learners. For non-maximum suppression
we join the candidate detection from all components and suppress them together
using the overlap over min-area criterion as described in [7, addendum], the
overlap threshold is set to0:3.

In the experiments of section 5 we explore the design space of our detector,
and in section 5.5 we describe a stronger detector than our baseline.



8 M. Mathias, R. Benenson, M. Pedersoli, and L. Van Gool

3.2 Detection speed

By using aggressive (soft and crosstalk) cascades and reducing features com-
putation across scales [2,6], it has been shown that integral channels detectors
can reach fast detection rates of the order of� 50 Hz for 640� 480 pixels im-
ages (either on GPU or multi-core CPU). The bulk of time is spent in the weak
classi�ers evaluation.

In our setup adding more templates to evaluate costs a linear decrease in
speed. This could be mitigated by using a hard cascade where a short classi�er
is �rst evaluated (trained on all views), before deciding to evaluate all view-
speci�c classi�ers. Our implementation is not speed-aware, however even with
a conservative estimate (5 components ! 5 � slow-down) it seems reasonable
to believe that the proposed approach can reach frame-rate detection speeds of
� 10 Hz once tuned for speed.

4 Building the DPMbaseline
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Figure 4: For the DPM detector,
the non-maximum suppression over-
lap (intersection over union, IoU)
threshold is an important parame-
ter. The default value of 0:5 leads to
poor performance.

Other than considering an evolved version
of the Viola&Jones detector, we would like
to also consider an evolved version of the
classic HOG+SVM[4]. As a reference base-
line we train a DPMusing the same train-
ing data as SquaresChnFtrs-5. We use
publicly available DPMversion 5 [9].

We de�ne the DPM components us-
ing the same three views asSquares-
ChnFtrs-5 (de�ned in section 3.1), due
to mirroring this results in 6 components.
Each component has one root template
and 8 parts. Besides the initialization of
the components we keep all other training parameters to default.

We found that a test time the non-maximum suppression (NMS) overlap
threshold is a crucial parameter. Figure 4 shows ourDPMevaluated over the
Pascal Faces dataset using di�erent thresholds. When using the default value0:5
the detection performance is signi�cantly lower than when using an an adequate
one (we use0:3). When setting the NMS threshold to the default value of 0:5, the
low performance DPM results are consistent with the previously reported one
[36]. In the supplementary material we have the equivalent plot forSquares-
ChnFtrs-5.

As will be discussed in section 6, to our surprise, ourDPMbaseline turns out
to match or outperform all other methods, including more sophisticated DPM
variants. We attribute the strong results to the proper use of available training
data, and to noticing the importance of appropriate non-maximum suppression.
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Figure 5: Quality versus number of
components. AP: average precision.
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Figure 6: Quality versus number of
training samples.

5 Experiments

We are interested in understanding which ingredients are critical for good face
detection. The e�ect of the parameters of the integral channels detector have
been explored in previous work on pedestrian detection [7,3]. A few of them
are repeated for faces and reported in the supplementary material (overall we
observe the same trends). In this section we present experiments (over the Pascal
Faces dataset) that explore orthogonal aspects not covered by previous work,
regarding view-speci�c components (Ÿ5.1), the amount of training data (Ÿ6),
and skin aware feature channels (Ÿ5.3). Along them, when relevant, we draw
parallel comparisons with the DPMapproach. In all plots, the thick black line
corresponds to ourSquaresChnFtrs-5 baseline detector (Ÿ3.1). In section 6 we
provide a comparative evaluation with other face detectors.

5.1 How many multi-view components ?

The number of components is considered to be a critical ingredient for high
quality detections [5]. Figure 5 shows the impact of the number of components
on the detection quality. When adding new components we only change the steps
of the yaw angle (instead of introducing views which where not considered in
our baseline model, such as faces with > 22.5 degree roll and pitch angles).

It can be seen that the quality of the integral channel features detector does
not improve any further past 5 components. As an increase in the number of
components directly maps to a decrease in detection speed, using more compo-
nents seems not to be bene�cial for our use case. Choosing5 components for our
baseline strikes a good balance between detection quality and detection speed.
If accurate face pose detection is of interest, more components may help to get
better initial pose estimates.

Our comparative experiments with DPMare done using6 components, these
are the same5 components, plus one obtained by mirroring the frontal face
(default behaviour of the DPMv5 source code [9]).
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5.2 How much training data ?

Collecting training data is a labour intensive task. The di�erent methods evalu-
ated in this paper di�er in the number of training samples ( 900to > 20 000) and
also in the type of annotations (from simple bounding boxes to facial landmarks
and face orientation). The amount and quality of the training data can highly
in�uence the performance of a detector. Exploring the in�uence of the amount
of annotations on all other methods is beyond the scope of this paper, we have
to assume that other methods explored this option to present a competitive face
detector.

To quantify how our approach scales with the amount of training data, we
evaluate the impact of varying the amount of training data in terms of precision
and recall. In �gure 6 we plot the precision-recall curves on the Pascal Faces
dataset when gradually varying the number of samples from250 to the entire
training data. Our SquaresChnFtrs-5 performs quite poorly when trained with
only a few samples. By adding more training data the recall can be steadily
improved without a�ecting precision. Our results indicate that the detection
quality could further be improved by using an even larger training set.

When doing a similar experiment for our DPMwe observe that with as few
as 500 samples it reaches already95 % of its �nal average precision (AP) value.
Similar to SquaresChnFtrs-5 , increasing the number of samples improves its
recall.

The number of training samples also highly in�uences the training time.
When using all available training data, SquaresChnFtrs- 5 will be trained in
less than 6h, while DPM needs roughly one week.

5.3 Which colour channels ?

One di�erence between our baseline detector (Ÿ3.1) and a vanillaHOGtemplate
(used inDPMs), is the use ofLUVcolour channels. Since faces have a discriminative
colour distribution, one wonders how much colour helps for the task. In �gure 8
we investigate the e�ect of colour for face detection. We consider the following
channels (see �gure 7):HOG, the gradient magnitude and quantized orientations;
the L luminance channel (grey image); theU chromaticity channel, which is
known to respond to skin colour; RmGis the subtraction of the red and green
channels, included because20 < R� G< 80 is the simplest known skin colour
detector [1]; Skin is a naive Bayes skin colour classi�er trained on the dbskin
dataset [23].

The results �gure 8 shows that the colour information mainly a�ects the
recall. Unsurprisingly the Skin channel is the most informative, we also con-
�rm that U captures relevant information for skin detection, improving over
RmG. Even the weakest colour channel improves over theL greyscale channel,
indicating that chromaticity is indeed relevant for the task.

Finally, when probing combinations such asHOG+L+Skinor HOG+LUV+Skin
we see no improvement compared to the vanillaHOG+LUV. This indicates that,
for this task, the classi�er is able to extract the relevant information directly
from the LUVchannels, without requiring the use of custom made channels.
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Figure 7: Example of colour channels considered, see section 5.3.
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Figure 8: Quality versus colour chan-
nels.
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Figure 9: Quality versus number of
weak classi�ers.

5.4 How many weak classi�ers ?

The number of weak classi�ers boosted to build the strong classi�er is an impor-
tant parameter which is usually set to a �xed value. We observed that during
training, already a small amount of weak learners is enough to successfully sep-
arate the positive and negative samples (20 stages before bootstrapping, 100
stages after the last bootstrapping stage). Since Adaboost lacks a well under-
stood regularization mechanism [24], depending on the training data, adding
more weak classi�ers could lead to over-�tting.

Figure 9 shows the in�uence of the classi�er length on the detection quality. A
small amount of only 200weak learners is already enough to get decent detection
quality of 82:8% average precision. Since weak classi�ers evaluation is the speed
bottleneck, using a smaller number of weak learners is of special interest when
targeting high detection speed.
On the other side, it can be observed that even with10 000Adaboost stages,
the performance does still not deteriorate. This shows that when using faces for
training, the system is robust to the number of weak classi�ers.

To match previous setups [7,3] we set the number of weak classi�ers in our
baseline to2000, even though �gure 9 shows that the detection quality already
saturates with 1500classi�ers.

5.5 Building a strong face detector

For our �nal face detector model we focus on quality to see how competitive
a detector based on rigid templates can be. To that end we apply previous
results presented in [3]. In that paper, the authors present three strategies to
improve the quality of an integral channel features detector. First, we follow their
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Figure 10: Pascal Faces results.
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Figure 11: AFW results.

suggestion by applying global normalization [21] before running the detector.
Second, we train a multi-scale model by doubling each template (component)
with an additional one of twice its size. Third, the templates are trained using
the maximum amount of pooling features: all possible rectangles for the the
baseline, and all possible squares for the largest templates (see [3]).
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Figure 12: FDDB results.

As can be seen by the high aver-
age precision of our baseline (e.g. �g-
ure 5), most views are well captured
by our training data. On the other
hand, as mentioned in section 5.2, be-
ing a rigid model, our detector has dif-
�culties to handle unseen views (com-
pared to a DPM, which generalizes via
deformations). To improve recall we
add copies of the training data with a
rotation of 35 degrees. We use these
to train 6 additional components that
handle tilted faces. Using the eleven
(5 + 6) components together provides
further improvement in detection quality (mainly increase in recall).

We name our �nal strong multi-scales model theHeadHunter detector. This
detector consists in total of 22 templates, 11 for each scale. Each scale uses 5
templates for the frontal faces and 6 for the rotated faces. We train a total of 12
di�erent templates, the remaining 10 templates are generated via mirroring.

6 Comparative detection quality

Figures 10, 11, and 12 show the results of our methods compared to many
competitors (including research and commercial systems). Only a few methods
provide results on all three datasets.

Commercial systems The commercial systems often do not provide con�dence
score and are shown as a single point. As can be seen these methods are among
the best performing ones with an operating point clearly chosen to provide high
precision.
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Figure 13: Qualitative HeadHunter detection results from FDDB (top row), Pas-
cal Faces (middle row), and AFW (bottom row).

Annotation type One of the highest scoring competitors to ours is theDPMbased
structured models method [34,33]. However, similarly toTSM(Tree Parts Model)
[36], this method requires the annotation of facial landmarks, while we need
only the bounding boxes. Furthermore, the method uses also context (upper
body detector) to improve results, although it is not clear how important that
is for the �nal results. We note that already a single template of our baseline
(�gure 5) matches the performances ofTSM[36].

Common approachesMost approaches rely either on a Viola&Jones like frame-
work (e.g. Face++,), or HOG+SVMbased (e.g. TSM, Structured Models, DPM ).
Even if methods are based on these two frameworks the range of results can vary
a lot. This underlines once again how the task of object detection is sensitive to
small details and therefore in depth analysis such as this one are required.

DPMresults Overall it is quite striking to notice that a properly trained DPM
baseline obtains top performance across all datasets considered (updating pre-
viously reported results, such as [36]). This is a testament to the importance of
careful baselines design, the importance of low-level details (a single threshold
value makes the di�erence between under-performing to top performing), and
the value of open source release of research material.
In parallel to the preparation of this manuscript Yan et al. [32] independently
reported results DPMfor the AFW dataset which are consistent to our results.
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Their work however is not focused on detection quality, and their high perform-
ing results are left unexplained there. Our discussion of section 4 details the
critical ingredients for a high quality DPMface detector.
Rigid templates Although our DPMreaches top performance, the experiments
also show thatHeadHunter, a set of rigid templates, essentially reaches the same
performance. This indicates that parts are useful but not critical to reach top
performance. As long as enough training data is available to cover pose diversity,
a small set of rigid templates will detect faces as good as anything else.
Problem saturation The di�erence in recall at high precision between 11 and 10
indicates that when increasing dataset di�culty, existing methods fail to reach
full recall. This shows there is still a measurable gap before matching human
performance. The missing recall in 12 seems mainly due to out-of-focus image
blur, one could consider this a separate problem. A detailed analysis of the causes
of failure for each detector type still remains to be done [11].
Open questionsNot only detection quality has not saturated, but also multiple
questions remain open, for example: theDPMand HeadHunter use mainly or-
thogonal strategies to improve detection quality; how can deformable parts and
strong boosted templates be used together best? If blur causes missing recall
in FDDB; how to best handle this case? There is not yet strong evidence that
�ducial points annotation can help build better detectors; how best to exploit
this data?

7 Conclusion and future work

In this work we have shown that even if face detection is a quite mature �eld,
there is still room for improvements in terms of both detection performance
as well as evaluation protocols. We have shown that the evaluation protocol
plays an important role, analysed the current issue and provided a thorough and
fair evaluation of face detectors in di�erent datasets. We also provide a update
evaluation method, which might well be suitable for other detection evaluation
datasets.

It turns out that for face detection the children of two classic detection ap-
proaches, Viola&Jones andHOG+SVM, are the best performing methods. Both our
DPMand integral channel features model,HeadHunter, reach top performance on
the task. Rigid templates provide excellent quality for many classes, especially
if su�cient training data is available. DPMs are still the method of choice if only
few training samples are available and at the same time high recall is of essence.
We believe that our �ndings are an important cue for the next generation of de-
tectors, probably combining the capacity of representation provided the integral
channel features detector with the powerful generalization induced by modelling
deformations.
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1 Non-maximum suppression

In the main paper we already show the importance of the non-maximum suppres-
sion to receive competitive results with DPMs. Here, we summarize the impact
of the non-maximum suppression parameters and also show its e�ect on the
HeadHunter detector. The overlap threshold and how the overlap is computed
both play an important role when performing greedy non-maximum suppression.

The goal of non-maximum suppression is to keep only one detection per ob-
ject instance, selecting the highest scoring detection and automatically removing
all redundant (lower scoring) detection bounding boxes that refer to the same
object. If two objects of interest are in close distance, e.g. occluding each other,
overlapping boxes should be kept if they refer to di�erent objects.

Given two candidate detection bounding boxes, the PASCAL VOC [1] over-
lap criterion is de�ned as the intersecting area divided by their union (so IoU
criterion). For pedestrian detection Dollar et al. [2, addendum] introduced a dif-
ferent criterion de�ned as intersecting area divided by the area of the smaller box
(�intersection over min-area� or Io M). Figure 1 compares the e�ect on detection
quality of the overlap measure and its threshold when doing non-maximum sup-
pression. The curves re�ect the performance of theHeadHunter detector on the
Pascal Faces dataset. To generate these curves we performed an initial detection
run with a (IoU or Io M) overlap threshold of 0:8 (which retains many false
positives), the curves for other overlap thresholds are then generated via post-
processing. The shown curves are therefore a close approximation to the results
obtained when evaluating the full pipeline with each di�erent overlap threshold.

Since the Pascal Faces dataset does not contain many face to face occlu-
sions, the overlap threshold plays a minor role when chosen lower than a certain
threshold (< 0:5 in case of IoU and < 0:3 for IoM criterion). On the other hand
a di�erent dataset may have many true positives located next to each other in
the image, prohibiting to simply choosing 0.0 as overlap threshold.

To maximize recall our experiments suggest to select a threshold close to the
0:4 for the IoU criterion and 0:3 for IoM's. Our �nal HeadHunter detector uses
IoM set to threshold 0:3.
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(a) IoU intersection over union criterion (b) IoM intersection over min-area criterion

Figure 1: In�uence of the overlap thresholds for di�erent non-maximum suppres-
sion criteria. HeadHunter detector evaluated over the Pascal Faces dataset.

2 Annotation corrections

Even tough we minimize the in�uence of di�erent annotation guidelines between
training and testing to provide a better evaluation method, the quality of the
underlying annotations still plays an important role when comparing di�erent
face detection methods.

As discussed in section 2.1 of the main paper, to improve the quality of eval-
uation we revisited the AFW and Pascal Faces datasets and we added bounding
boxes for faces previously not annotated. For Pascal Faces we also adjusted the
annotation bounding boxes of existing annotations, since these did not follow a
clear annotation policy. Some of the issues found in these datasets are visualized
in �gures 2 and 3.

Please note that ambiguous faces are marked as �ignore region�, and that very
small and very large annotations are better handled via our improved evaluation
protocol (see main paper).

3 Annotation policy

Figure 4: Bounding boxes
include all indicated facial
landmarks. Image from [3].

We annotated all faces with one side longer than
15 pixels. The bounding boxes are tight so as to
include all 21 facial landmarks de�ned in [3] and
illustrated in �gure 4.

We annotated occluded faces if at least on eye
is visible in the image. The bounding box is tight
around the visible facial landmarks, we do not hal-
lucinate the non-visible area. Bounding box anno-
tations also do not span over image borders.
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(a) Original annotations

(b) Updated annotations

Figure 2: Original and updated annotations on the Pascal Faces dataset. We
added many missing bounding boxes and changed existing ones to follow a con-
sistent annotation policy.

(a) Original annotations

(b) Updated annotations

Figure 3: Original and updated annotations on the AFW dataset. We only added
missing annotations, the bounding boxes of existing annotations were already
accurate.
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Except for clear annotation mistakes, we marked new annotations with the
�ignore� �ag. Although many of these additional annotations show faces in dif-
�cult condition, we did not want to change the overall characteristic of the
datasets. By adding annotations for faces which might be di�cult to detect, we
do not punish algorithms which are able to detect such instances, especially if
they do so with high con�dence. We found that in the original Pascal Faces
dataset 19 % of faces were not annotated.

4 Remedial measures for bounding box policy

For a fair comparison among methods with di�erent bounding box annotation
policy, we optimize the size and location of the detection bounding boxes for each
method independently with the goal to maximize the overlap with the ground
truth annotations (see section 2 of main paper). By searching a global scaling
and translation that maximize performances we evaluate as if each method would
have taken care of tuning their detections towards the speci�c test set. Note that
since bounding boxes are adapted for every method in our evaluation, it becomes
part of the evaluation protocol and does not advantage any speci�c method.

For estimating this per-method transformation we collect the mean displace-
ment in term of location and size of all correct detections with the corresponding
ground truth annotations (ful�lling the required intersection over union > 0.5).
These values represent the bias between annotations and detection bounding
boxes. We use them to estimate a global transformation that attempts to cor-
rect the bounding box size, ratio, and location. This way we obtain detections
that are better aligned with the annotations. Since the parameters we optimize
in�uence each other, we iteratively repeat this procedure several (�ve) times.

Figure 5 shows the e�ect of correcting the annotations and removing the
mentioned bias.

4.1 Single method, multiple policies

In the case of detections from Google Picasa, we realised that the bounding boxes
have a very high variation in size for di�erent viewing angles, such that frontal
faces span the whole head, while lateral boxes are tight, similar to our annotation
guidelines. Such e�ects could be caused (internally) by using di�erent detectors
with di�erent bounding boxes policies. The procedure described in the previous
section works properly only when there is a single mode in the location and size
biases. With multiple modes, as observed for the Picasa bounding boxes, the
method would compensate only for the mean error.

In this particular case we manually veri�ed all detections. Other methods
seem not to have such severe variations. Adjusting boxes di�erently for each
detection mode would be preferable but requires additional information currently
not provided by most methods.
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(a) Original annotations, no bounding box
optimisation

(b) Original annotations, bounding box
optimisation

(c) New annotations, no bounding box op-
timisation

(d) New annotations, bounding box opti-
misation

Figure 5: Precision/Recall curves of the di�erent evaluation methods on the Pas-
cal Faces dataset. (a) Shows the evaluation based on the original annotations,
not compensating di�erent guidelines. (d) Shows our new evaluation. (b) and
(c) are partial combinations.
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5 Learned SquaresChnFtrs-5 model

The learned SquaresChnFtrs-5 model has multiple aspects to it, which we vi-
sualize in the following series of �gures. Figure 6 shows the three learned com-
ponents (the two side view models are mirrored, making a total of5 templates
at run-time). Figure 7 shows the spatial distribution of the pooling regions per
channel. Di�erent from DPM model, the integral channel features model has
overlapping pooling regions and thus no clear pattern emerges.

Figure 8a shows which channels are more commonly selected, and �gure
8b shows which pair of channels are more commonly used (in each branch of
the level-2 decision trees). It can be seen that most decisions are based on the
luminance channel, horizontal gradients, and gradient magnitude channels. In-
terestingly, it can be seen that the luminance channel is mainly used with itself,
while other channels tend to mix with each other (as would be expected). The
side view models (not shown) have a similar pattern for the channels usage.

A di�erent view of the spatial arrangement of the pooling regions is visible in
�gure 9. Figure 6c shows the learned frontal face template, �gure 7c presents it
decomposed by channel, and �gure 9a does so by decomposing by pooling region
area. In �gure 9a it can be seen that most pooling regions are small, the most
relevant ones (i.e. higher detection score in�uence) covering the face area. Only
a few features cover the whole template.

Figure 9b shows the centre of each (square) pooling region, and �gure 9c the
pairs of features used in each level-2 decision tree branch (one line segment per
pair). It can be seen that the features cover densely the model area, without
an obvious preference for the face elements. We attribute this to the need of
the model to inspect the background as much as the face elements in order to
decide for the presence of a face or not. Feature pairs also show no clear pattern,
suggesting that random proposals might be a reasonable option during training
(we currently use exhaustive greedy search, root node �rst, leave nodes given
the root node).
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(a) 60� and above model (b) 30� to 60� model (c) Frontal model

Figure 6: Components of the learned model (and example training sample). Red
indicates areas with higher in�uence for the score decision.

(a) 60� and above model

(b) 30� to 60� model

(c) Frontal model

Figure 7: Per channel view of the pooling regions. Red indicates areas with higher
in�uence for the score decision, colour code normalized per channel.
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(a) Frequency of channel usage (b) Channels co-occurrence

Figure 8: Statistics of the channels usage for the frontal model. Other models
show a similar pattern.

(a) Pooling regions by area

(b) Centre of the pooling features.
Features are well distributed all
around the template.

(c) Feature pairs. No clear pattern is
visible, pairs are spread all over the
template.

Figure 9: Statistics of the channel usage for the frontal model, other views show
a similar pattern.


